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1. THE COFRAME BUNDLE

One of the fundamental problems in geometry is that of equivalence, the problem of deter-
mining when two objects in a geometric category are isomorphic. Here I remark on geometries
which are ‘G-structural,’ which roughly means that they can be defined by a reduction of the
structure group of the tangent bundle. The choice of G determines a kind of geometry, in the
sense that G is the group of ‘local symmetries’ of your geometry, or the group which pre-
serves the framings compatible with a geometry. Preliminary to this, let us consider the ‘trivial
geometry’ of smooth manifolds.

Definition 1. Given a smooth manifold Mn, a coframe at x ∈M is a linear isomorphism

u : TxM → Rn .

The set Fx of coframes based at x is a GL(Rn) torsor, with action given by postcomposition
(by the inverse, for reasons of convention). The frame bundle

F(M) = ∪x∈MFx ⊂ Hom(TM,Rn).

is a GL(Rn)-principal bundle with projection map π sending u ∈ Fx to x.

For frames u, v ∈ Fx the map A = uv−1 ∈ GL(Rn) is the unique element of GL(Rn) so
that Au = v.

I’ll drop the M in F(M) from here on in the notation. I’ll also take this opportunity to make
the blanket assumption that M is contractible, since we’re only discussing local matters in this
note.

Fix a basis of Rn. A little thought shows that locally, a coframing of M (n independent
1-forms η1, . . . , ηn) is equivalent to a section of F .

Definition 2. The tautological coframe form on F is the Rn-valued 1-form ω ∈ Ω1(F ,Rn)
given by the formula

ω(~v) = u(π′(~v)) = (π∗u)(~v) for ~v ∈ TuF .

The reason that this is called the tautological form is that it has the following reproducing
property.

Proposition 1. Given a section η of F ,

η∗ω = η.

Proof. Fix ~v ∈ TxM and let η(x) = u. Note that η′(~v) ∈ TuF . Then

(η∗ω)(~v) = ω(η′(~v)) = u(π′η′(~v)) = u(~v) = ηx(~v).

�

This will let us treat all (eventually adapted to a geometry...) coframings at once.
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2. G-STRUCTURES

Definition 3. Given G ⊂ GL(Rn) a matrix Lie group, a G-structure on Mn is a principal G
subbundle B of F .

This is supposed to to be such that the sections are the coframing adapted to a certain speci-
fied geometric structure on M of a certain geometric type (the latter determining G.).

Example 1. Suppose M2n has an almost complex structure J , so that J is an endomorphism
of TM for which J2 = −I at each point. Give R2n the canonical structure of Cn and consider
any coframe u ∈ F as a map u : TxM → Cn. Then u is compatible with J if u(JX) = i u(X)
for all X ∈ Tπ(u)M . The subset B of frames compatible with J is a GL(Cn)-structure on M .
Indeed, we may write any two coframes in B as u and Au for some A ∈ GL(R2n), and then

iAu(X) = Au(JX) = Aiu(X).

Since this holds for all X , and u is surjective, we have A ∈ GL(Cn).
Conversely, given a principle GL(Cn) sub-bundle B of F , we can determine a unique com-

plex structure on M . For each point x ∈ M we simply choose any frame u ∈ Bx and define J
by requiring u(Jv) = iu(v) for all v ∈ TxM . This choice of J will not depend on our choice
of u because any other coframe in Fx differs from u by an element of GL(Cn).

Note that the sections of B are in bijection with bases for (T∨M)1,0.

Other examples:
Geometry Group
Riemannian O(n)
conformal CO(n)
almost complex GL(Cn)
almost symplectic SP (n)
coframings {Id}

Definition 4. AG-structure B is flat at x if there exists coordinates x1, . . . , xn : M → Rn about
x so that the coframing

( dx1, . . . , dxn) : TM → Rn

has image in B.

Example 2. LetB the set of orthonormal coframes of a Riemannian manifold (M, g). ThenB is
flat if and only if M is (locally) isometric to En, flat Euclidean space. Indeed, the coordinates
x1, . . . , xn give an isometry from M to En if and only if ( dx1, . . . , dxn) is an orthonormal
coframing.

Proposition 2. A given G-structure is flat at x if and only if there is an integral manifold
η : Σ→ B of the exterior differential system

(B, { dωi, i = 1, . . . , n})
for which η∗(ω1∧ . . . ∧ωn) never vanishes and so that x ∈ π(Σ).

Proof. Suppose such η : Σ → B exists. The condition that η∗(ω1∧ . . . ∧ωn) 6= 0 means that
πη : Σ → M is a local diffeomorphism. Shrinking M and Σ if necessary, we may replace Σ
with M . Then η is seen to be a section of B. Since η is an integral embedding, for i = 1, . . . , n,

0 = η∗( dωi) = d(η∗ωi) = dηi.

Thus, by the Poincaré lemma, there are functions xi so that

ηi = dxi.
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Finally, since
dx1 ∧ . . . ∧ dxn = η1 ∧ . . . ∧ ηn = η∗(ω1 ∧ . . . ∧ωn) 6= 0,

these xi give flat coordinates.
The converse proceeds by checking that a flat section gives an integral manifold. �

So far, we have simply reformulated a common problem in geometry, without proving much.
Once we learn how to find solutions to EDS we will be able to prove when integral manifolds
exist. However, we can already see obstructions to the existence of solutions without much
more work.

Theorem 1 (Cartan’s first structure equation). Given a G-structure B, there is a locally a
pseudo-connection1

ϕ = (ϕij) ∈ Ω1(B, g)

and corresponding torsion function

T = (T ijk) ∈ C∞(B, (Λ2Rn)∨ ⊗ Rn)

so that

(1) dωi = −ϕij ∧ωj + T ijkω
j ∧ωk.

Proof. (Tersely) The pseudo-connection ϕ may be constructed pointwise, so it is left to show
that such a T exists.

The forms ωi are a basis for the semi-basic forms2 of B. So it suffices to show that dωi +
ϕij∧ω

j is semi-basic.
One can check that under the action of an element g ∈ G on B, one has

g∗ω = g−1ω

(the right hand side is the same postcomposition action as on F .) Taking the derivative, for any
X̃ = (X̃ i

j) ∈ g,
−X̃ i

jω
j = LX̃ω

i = �����
d(X̃ ωi) + X̃ dωi.

Finally, using the reproducing property of a pseudo-connection,

X̃ ( dωi + ϕij ∧ω
j) = 0,

so that dωi + ϕij∧ω
j is semi-basic. �

Remark 1. The pseudo-connection ϕij is notably not unique! In fact, for any choice of function
(U i

jk) ∈ C∞(B, g⊗ Rn), the new form

(ϕ̃ij) = (ϕij + U i
jkω

j)

will also be a pseudo-connection. In the process, T will also be modified:

dωi = (ϕij + U i
jkω

k) ∧ωj − U i
jkω

k ∧ωj + T ijkω
j ∧ωk

= ϕ̃ij ∧ω
j + (T ijk + U i

[jk])ω
j ∧ωk.

Here [jk] denotes anti-symmetrization in those indices.

Definition 5. If there is a choice of pseudo-connection so that T (u) = 0, then we say that the
(first order) torsion of B is absorbable at u.

1A pseudo-connection is almost a principal connection, but is not required to be equivariant in each fiber.
It is g-valued and it satisfies the reproducing property ϕ(X̃) = X , where X̃ is the left invariant vector field
corresponding to X ∈ g under the principal bundle action on B. Here g is the Lie algebra of G.

2A form ξ ∈ Ω∗(B) is semi-basic if v ξ = 0 for any vertical vector v ∈ TB. A vector is vertical if π′(v) = 0.
Note that the X̃ of the previous footnote span the vertical vectors.
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Fixing arbitrary ϕ and its corresponding torsion T ijk, the torsion of B is absorbable at u if
and only if there is a choice of U i

jk so that T ijk(u)− U i
[jk](u) = 0.

Note also that this absorbability depends on both g (the geometry) and on T (a measure of
how twisted the fibers of B are).

Now, define Babs to be the locus of points in B where torsion is absorbable.

Proposition 3. Any integral submanifold η : M → B as in Proposition 2 must have image in
Babs.

Proof. Since η1∧ . . . ∧ηn = η∗(ω1∧ . . . ∧ωn) 6= 0, there are functions U i
jk ∈ C∞(M) so that

η∗ϕij = U i
jkη

i.

But then

0 = η∗ dωi = η∗(−ϕij ∧ωj + T ijkω
j ∧ωk)

= −U i
jkη

k ∧ ηj + η∗T ijkη
j ∧ ηk

= (U i
[jk] + η∗T ijk)η

j ∧ ηk.

Since the ηi are independent, this means that (U i
[jk] +η∗T ijk) = 0. Hence the torsion is absorbed

in the image of η for the pseudo-connection

(ϕij + π∗U i
jkω

k).

�

Corollary 1. If Babs is too small (e.g of smaller dimension than M ), then the EDS (B, { dωi})
has no solutions for which η∗(ω1∧ . . . ∧ωn) 6= 0, so B is not flat.

In particular, if the torsion is nowhere absorbable, then B cannot be flat.
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